Python 工匠:在边界处思考

原文转载自 「piglei」 ( https://www.zlovezl.cn/articles/15-thinking-in-edge-cases/ ) By piglei

预计阅读时间 0 分钟(共 0 个字, 0 张图片, 0 个链接)

前言

这是 “Python 工匠”系列的第 15 篇文章。[查看系列所有文章]

2016 年,Linux 操作系统的创造者 Linus Torvalds 参加了一场 TED 访谈节目。整个节目的前半部分,主要是他在讲如何在家光着膀子写出 Linux 的故事,没有涉及太多编程相关的事情。

不过在访谈快结束时,突然出现了一个有趣的环节。主持人向 Linus 提问道:“你曾说过更愿意和那些有着好的 代码品味 的人共事,那在你眼里,什么才是好的代码品味?”

为了解释这个问题,Linus 在大屏幕上展示了一份代码。我把其摘抄如下。

remove_list_entry(entry) {
    prev = NULL;
    walk = head;

    // 遍历链表
    while (walk != entry) {
        prev = walk;
        walk = walk->next;
    }

    // 关键:当要删除时,判断当前位置是否在链表头部进行不同的动作
    if (!prev)
        head = entry->next;
    else
        prev->next = entry->next;
}

函数 remove_list_entry 的主要功能是通过遍历链表,删除里面的某个成员。但在这份代码中,存在一个 边界情况(Edge Case)

在编程时,“边界情况”是指那些只在极端情景下出现的情况。比如在上面的代码里,当我们要找的元素刚好处于链表头部时,就是一个边界情况。为了处理它,函数在删除前进行了一次 if / else 判断。

Linus 认为这条 if 语句是整段代码的“坏味道”来源,写出它的人代码品味不够好 ☹️。那么,一个品味更好的人应该怎么写呢?很快,屏幕上出现了第二份代码。

remove_list_entry(entry) {
    indirect = &head

    // 遍历链表过程代码已省略

    // 当要删除时,直接进行指针操作删除
    *indirect = entry->next
}

在新代码中,remove_list_entry 函数利用了 C 语言里的指针特性,把之前的 if / else 完全消除了。无论待删除的目标是在链表头部还是中间,函数都能一视同仁的完成删除操作。之前的边界情况消失了。

看到这你是不是在犯嘀咕:Python 又没有指针,你跟我说这么多指针不指针的干啥?虽然 Python 没有指针,但我觉得这个例子为我们提供了一个很有趣的主题。那就是 如何充分利用语言特性,更好的处理编码时的边界情况。

我认为,好代码在处理边界情况时应该是简洁的、“润物细无声”的。就像上面的例子一样,可以做到让边界情况消融在代码主流程中。在写 Python 时,有不少编码技巧和惯例可以帮我们做到这一点,一块来看看吧。

第一课:使用分支还是异常?

今天周末,你计划参加朋友组织的聚餐,临出门时突然想起来最近是雨季。于是你掏出手机打开天气 App,看看今天是不是会下雨。如果下雨,就带上一把伞再出门。

假如把“今天下雨”类比成编程时的 边界情况,那“看天气预报 + 带伞”就是我们的边界处理代码。这种 if 下雨 then 带伞 的分支式判断,基本是一种来自直觉的思考本能。所以,当我们在编程时发现边界情况时,第一反应往往就是:“弄个 if 分支把它包起来吧!”

比如下面这段代码:

def counter_ap(l):
    """计算列表里面每个元素出现的数量"""
    result = {}
    for key in l:
        # 主流程:累加计数器
        if key in result:
            result[key] += 1
        # **边界情况:当元素第一次出现时,先初始化值为 1**
        else:
            result[key] = 1
    return result

# 执行结果:
print(counter_ap(['apple', 'banana', 'apple']))
{'apple': 2, 'banana': 1}

在上面的循环里,代码的主流程是“对每个 key 的计数器加 1”。但是,当 result 字典里还没有 key 元素时,是不能直接进行累加操作的(会抛出 KeyError)。

>>> result = {}
>>> result['foo'] += 1
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError: 'foo'

于是一个边界情况出现了:当元素第一次出现时,我们需要对值进行初始化。

所以,我专门写了一条 if 语句去处理这个边界情况。代码简单,无需过多解释。但你可能不知道的是,其实有一个术语来专门描述这种编程风格:“(LBYL)Look Before You Leap”

“LBYL” 这缩写不太好翻译。用大白话讲,就是在进行操作前,先对可能的边界情况进行条件判断。根据结果不同,确定是处理边界情况,还是执行主流程。

如之前所说,使用 “LBYL” 来处理边界情况,几乎是一种直觉式的行为。“有边界情况,就加上 if 分支”“如果天气预报说下雨,我就带伞出门”一样,是一种基本不需要过脑子的操作。

而在 LBYL 之外,有着与其形成鲜明对比的另外一种风格:“EAFP(Easier to Ask for Forgiveness than Permission)”

获取原谅比许可简单(EAFP)

“EAFP” 通常被翻译成“获取原谅比许可简单”。如果还用下雨举例,那 EAFP 的做法就类似于 “出门前不看任何天气预报,如果淋雨了,就回家后洗澡吃感冒药 💊”

使用 EAFP 风格的代码是这样的:

def counter_af(l):
    result = {}
    for key in l:
        try:
            # 总是直接执行主流程:累加计数器
            result[key] += 1
        except KeyError:
            # 边界情况:当元素第一次出现时会报错 KeyError,此时进行初始化
            result[key] = 1
    return result

和 LBYL 相比,EAFP 编程风格更为简单粗暴。它总是直奔主流程而去,把边界情况都放在异常处理 try except 块内消化掉。

如果你问我:“这两种编程风格哪个更好?”,我只能说整个 Python 社区对基于异常捕获的“请求原谅(EAFP)”型编程风格有着明显的偏爱。其中的原因有很多。

首先,和许多其他编程语言不同,在 Python 里抛出异常是一个很轻量的操作,即使程序会大量抛出、捕获异常,使用 EAFP 也不会给程序带来额外的负担。

其次,“请求原谅”在性能上通常也更有优势,因为程序总是直奔主流程而去,只有极少数情况下才需要处理边界情况。拿上面的例子来说,第二段代码通常会比第一段更快,因为它不用在每次循环时都做一次额外的成员检查。

Hint:如果你想了解更多这方面的知识,建议阅读: Write Cleaner Python: Use Exceptions

所以,每当你想凭直觉写下 if else 来处理边界情况时,先考虑下使用 try 来捕获异常是不是更合适。毕竟,Pythonista 们总是喜欢“吃感冒药 💊”胜过“看天气预报”。😅

当容器内容不存在时

Python 里有很多内建的容器类型,比如字典、列表、集合等等。在进行容器操作时,经常会出现一些边界情况。其中“要访问的内容不存在”,是最为常见的一类:

  • 操作字典时,访问的键 key 不存在,会抛出 KeyError 异常
  • 操作列表、元组时,访问的下标 index 不存在,会抛出 IndexError 异常

对于这类边界情况,除了针对性的捕获对应异常外,还有许多其他处理方式。

使用 defaultdict 改写示例

在前面的例子里,我们使用了 try except 语句处理了“key 第一次出现”这个边界情况。虽然我说过,使用 try 的代码比 if 更好,但这不代表它就是一份地道的 Python 代码。

为什么?因为如果你想统计列表元素的话,直接用 collections.defaultdict 就可以了:

from collections import defaultdict


def counter_by_collections(l):
    result = defaultdict(int)
    for key in l:
        result[key] += 1
    return result

这样的代码既不用“获取许可”,也无需“请求原谅”。 整个函数只有一个主流程,代码更清晰、更自然。

为什么 defaultdict 可以让边界情况消失?因为究其根本,之前的代码就是少了针对 “键不存在” 时的默认处理逻辑。所以,当我们用 defaultdict 声明了如何处理这个边界情况时,原本需要手动判断的部分就消失了。

Hint:就上面的例子来说,使用 collections.Counter 也能达到同样的目的。

使用 setdefault 取值并修改

有时候,我们需要操作字典里的某个值,但它又可能并不存在。比如下面这个例子:

# 往字典的 values 键追加新值,假如不存在,先以列表初始化
try:
    d['values'].append(value)
except KeyError:
    d['values'] = [value]

针对这种情况,我们可以使用 d.setdefault(key, default=None) 方法来简化边界处理逻辑,直接替换上面的异常捕获语句:

# 如果 setdefault 指定的 key(此处为 "values")不存在,以 [] 初始化,否则返回已存在
# 的值。
d.setdefault('values', []).append(value)

Hint:使用 defaultdict(list) 同样可以利索的解决这个问题。

使用 dict.pop 删除不存在的键

如果我们要删除字典的某个 key,一般会使用 del 关键字。但当 key 不存在时,删除操作就会抛出 KeyError 异常。

所以,想要安全删除某个 key,还得加上一段异常捕获逻辑。

try:
    del d[key]
except KeyError:
    # 忽略 key 不存在的情况
    pass

但假设只是单纯的想删除某个 key,并不关心它是否存在、有没有删成功。使用 dict.pop(key, default) 方法就够了。

只要在调用 dict.pop 方法时传入默认值,key 不存在时就不会抛出异常了。

# 使用 pop 方法,指定 default 值为 None,当 key 不存在时,不会报错
d.pop(key, None)

Hint:严格来说,pop 方法的主要用途并不是去删除某个 key,而是 取出 某个 key 对应的值。不过我觉得偶尔用它来做删除也无伤大雅。

当列表切片越界时

所有人都知道,当你的列表(或元组)只有 3 个元素,而你想要访问第 4 个时,解释器会报出 IndexError 错误。我们通常称这类错误为“数组越界”

>>> l = [1, 2, 3]
>>> l[2]
3
>>> l[3]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: list index out of range

但你可能不知道的是,假如你请求的不是某一个元素,而是一段范围的切片。那么无论你指定的范围是否有效,程序都只会返回一个空列表 [],而不会抛出任何错误:

>>> l = []
>>> l[1000:1001]
[]

了解了这点后,你会发现像下面这种边界处理代码根本没有必要:

def sum_list(l, limit):
    """对列表的前 limit 个元素求和
    """
    # 如果 limit 过大,设置为数组长度避免越界
    if limit > len(l):
        limit = len(l)
    return sum(l[:limit])

因为做切片不会抛出任何错误,所以不需要判断 limit 是否超出范围,直接做 sum 操作即可:

def sum_list(l, limit):
    return sum(l[:limit])

利用这个特点,我们还可以简化一些特定的边界处理逻辑。比如安全删除列表的某个元素:

# 使用异常捕获安全删除列表的第 5 个元素
try:
    l.pop(5)
except IndexError:
    pass

# 删除从 5 开始的长度为 1 的切片,不需要捕获任何异常
del l[5:6]

好用又危险的 “or” 操作符

or 是一个几乎在所有编程语言里都有的操作符,它在 Python 里通常被用来和 and 一起做布尔值逻辑运算。比如:

>>> False or True
True

or 还有一个有趣的特点是短路求值,比如在下面的例子里,1 / 0 永远不会被执行(也就意味着不会抛出 ZeroDivisionError)

>>> True or (1 / 0)
True

在很多场景下,我们可以利用 or 的特点来简化一些边界处理逻辑。看看下面这个例子:

context = {}
# 仅当 extra_context 不为 None 时,将其追加进 context 中
if extra_context:
    context.update(extra_context)

在这段代码里,extra_context 的值一般情况下会是一个字典,但有时也可能是 None。所以我加了一个条件判断语句,当它的值不为 None 时才做 .update 操作。

如果使用 or 操作符,我们可以让上面的语句更简练:

context.update(extra_context or {})

因为 a or b or c or ... 这样的表达式,会返回这些变量里第一个布尔值为真的值,直到最后一个为止。所以 None or {} 其实就等于 {},于是当 extra_context 值为 None 时,我们的 or 表达式会将它变成一个空字典。之前的条件判断就可以被简化成一个 or 表达式了。

使用 a or b 来表示“ a 为空时用 b 代替”,这种写法一点也不新鲜。你在各种编程语、各类框架源码源码里都能发现它的影子。但在这个写法下,其实也藏有一个陷阱。

因为 or 操作计算的是变量的布尔真假值。所以,不光是 None,所有的 0、[]、{}、set() 以及其他所有会被判断为布尔假的东西,都会在 or 运算中被忽略。

# 所有的 0、空列表、空字符串等,都是布尔假值
>>> bool(None), bool(0), bool([]), bool({}), bool(''), bool(set())
(False, False, False, False, False, False)

如果忘记了 or 的这个特点,可能会碰到一些很奇怪的问题。比如这段代码:

timeout = config.timeout or 60

虽然上面代码的目的,是想要判断当 config.timeoutNone 时使用 60 做默认值。但假如 config.timeout 的值被主动配置成了 0 秒,timeout 也会因为上面的 0 or 60 = 60 运算被重新赋值为 60。正确的配置因此被忽略掉了。

所以,有时使用 if 来进行精确的边界处理会更稳妥一些:

if config.timeout is None:
    timeout = 60

不要手动去做数据校验

无数前辈的经验告诉我们:“不要信任任何用户输入”。这意味着所有存在用户输入的地方,都必须对其进行校验。那些无效、危险的用户输入值,就是需要我们处理的边界情况。

假如我在写一个命令行小程序,需要让用户输入一个 0-100 范围的数字。要是用户的输入无效,就要求其重新输入。

程序大概长这样:

def input_a_number():
    """要求用户输入一个 0-100 的数字,如果无效则重新输入
    """
    while True:
        number = input('Please input a number (0-100): ')

        #  此处往下的三条 if 语句都是输入值的边界校验代码
        if not number:
            print('Input can not be empty!')
            continue
        if not number.isdigit():
            print('Your input is not a valid number!')
            continue
        if not (0 <= int(number) <= 100):
            print('Please input a number between 0 and 100!')
            continue

        number = int(number)
        break

    print(f'Your number is {number}')

执行效果如下:

Please input a number (0-100):
Input can not be empty!
Please input a number (0-100): foo
Your input is not a valid number!
Please input a number (0-100): 65
Your number is 65

这个函数一共有 14 行有效代码。其中有 3 段 if 共 9 行代码,都是用于校验的边界值检查代码。也许你觉得这样的检查很正常,但请想象一下,假如需要校验的输入不止一个、校验逻辑也比这个复杂怎么办?那样的话,这些边界值检查代码就会变得又臭又长。

如何改进这些代码呢?把它们抽离出去,作为一个校验函数和核心逻辑隔离开是个不错的办法。但更重要的在于,要把“输入数据校验”作为一个独立的职责与领域,用更恰当的模块来完成这项工作。

在数据校验这块,pydantic 模块是一个不错的选择。如果用它来做校验,代码可以被简化成这样:

from pydantic import BaseModel, conint, ValidationError


class NumberInput(BaseModel):
    # 使用类型注解 conint 定义 number 属性的取值范围
    number: conint(ge=0, le=100)


def input_a_number_with_pydantic():
    while True:
        number = input('Please input a number (0-100): ')

        # 实例化为 pydantic 模型,捕获校验错误异常
        try:
            number_input = NumberInput(number=number)
        except ValidationError as e:
            print(e)
            continue

        number = number_input.number
        break

    print(f'Your number is {number}')

在日常编码时,我们应该尽量避免去手动校验数据。而是应该使用(或者自己实现)合适的第三方校验模块,把这部分边界处理工作抽象出去,简化主流程代码。

Hint: 假如你在开发 Web 应用,那么数据校验部分通常来说都挺容易。比如 Django 框架有自己的 forms 模块,Flask 也可以使用 WTForms 来进行数据校验。

不要忘记做数学计算

很多年前刚接触 Web 开发时,我想学着用 JavaScript 来实现一个简单的文字跑马灯动画。如果你不知道啥是“跑马灯”,我可以稍微解释一下。“跑马灯”就是让一段文字从页面左边往右边不断循环滚动,十几年前的网站特别流行这个。😬

我记得里面有一段逻辑是这样的:控制文字不断往右边移动,当横坐标超过页面宽度时,重置坐标后继续。我当时写出来的代码,翻译成 Python 大概是这样:

while True:
    if element.position_x > page_width:
        # 边界情况:当对象位置超过页面宽度时,重置位置到最左边
        element.position_x -= page_width

    # 元素向右边滚动一个单位宽度
    element.position_x += width_unit

看上去还不错对不对?我刚写完它时也是这么认为的。但后来有一天,我重新看到它时,才发现其中的古怪之处。

在上面的代码里,我需要在主循环里保证 “element.position_x 不会超过页面宽度 page_width”。所以我写了一个 if 来处理当 position_x 超过页面宽度的情况。

但如果是要保证某个累加的数字(position_x)不超过另一个数字(page_width),直接用 % 做取模运算不就好了吗?

while True:
    # 使用 % page_with 控制不要超过页面宽度
    element.position_x = (element.position_x + width_unit) % page_with

这样写的话,代码里的边界情况就连着那行 if 语句一起消失了。

和取模运算类似的操作还有很多,比如 abs()math.floor() 等等。我们应该记住,不要写出 if value < 0: value = -value 这种“边界判断代码”,直接使用 abs(value) 就好,不要重新发明绝对值运算。

总结

“边界情况(Edge cases)”是我们在日常编码时的老朋友。但它不怎么招人喜欢,毕竟,我们都希望自己的代码只有一条主流程贯穿始终,不需要太多的条件判断、异常捕获。

但边界情况同时又是无法避免的,只要有代码,边界情况就会存在。所以,如果能更好的处理它们,我们的代码就可以变得更清晰易读。

除了上面介绍的这些思路外,还有很多东西都可以帮助我们处理边界情况,比如利用面向对象的多态特性、使用 空对象模式 等等。

最后再总结一下:

  • 使用条件判断和异常捕获都可以用来处理边界情况
  • 在 Python 里,我们更倾向于使用基于异常捕获的 EAFP 风格
  • 使用 defaultdict / setdefault / pop 可以巧妙的处理当键不存在时的边界情况
  • 对列表进行不存在的范围切片不会抛出异常
  • 使用 or 可以简化默认值边界处理逻辑,但也要注意不要掉入陷阱
  • 不要手动去做数据校验,使用 pydantic 或其他的数据校验模块
  • 利用取模、绝对值计算等方式,可以简化一些特定的边界处理逻辑

看完文章的你,有没有什么想吐槽的?请留言或者在 项目 Github Issues 告诉我吧。

<<<上一篇【14.写好面向对象代码的原则(下)】

为了避免内容重复,在系列第 4 篇“容器的门道”里出现的 EAPF 相关内容会被删除,并入到本文中。

附录

  • 题图来源: Photo by Jessica Ruscello on Unsplash
  • 更多系列文章地址:https://github.com/piglei/one-python-craftsman

系列其他文章:

more_vert